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Abstract

Background: Routinely collected data in hospitals is complex, typically heterogeneous, and scattered across multiple Hospital
Information Systems (HIS). This big data, created as a byproduct of health care activities, has the potential to provide a better
understanding of diseases, unearth hidden patterns, and improve services and cost. The extent and uses of such data rely on its
quality, which is not consistently checked, nor fully understood. Nevertheless, using routine data for the construction of data-driven
clinical pathways, describing processes and trends, is a key topic receiving increasing attention in the literature. Traditional
algorithms do not cope well with unstructured processes or data, and do not produce clinically meaningful visualizations. Supporting
systems that provide additional information, context, and quality assurance inspection are needed.

Objective: The objective of the study is to explore how routine hospital data can be used to develop data-driven pathways that
describe the journeys that patients take through care, and their potential uses in biomedical research; it proposes a framework for
the construction, quality assessment, and visualization of patient pathways for clinical studies and decision support using a case
study on prostate cancer.

Methods: Data pertaining to prostate cancer patients were extracted from a large UK hospital from eight different HIS, validated,
and complemented with information from the local cancer registry. Data-driven pathways were built for each of the 1904 patients
and an expert knowledge base, containing rules on the prostate cancer biomarker, was used to assess the completeness and utility
of the pathways for a specific clinical study. Software components were built to provide meaningful visualizations for the
constructed pathways.

Results: The proposed framework and pathway formalism enable the summarization, visualization, and querying of complex
patient-centric clinical information, as well as the computation of quality indicators and dimensions. A novel graphical representation
of the pathways allows the synthesis of such information.

Conclusions: Clinical pathways built from routinely collected hospital data can unearth information about patients and diseases
that may otherwise be unavailable or overlooked in hospitals. Data-driven clinical pathways allow for heterogeneous data (ie,
semistructured and unstructured data) to be collated over a unified data model and for data quality dimensions to be assessed.
This work has enabled further research on prostate cancer and its biomarkers, and on the development and application of methods
to mine, compare, analyze, and visualize pathways constructed from routine data. This is an important development for the reuse
of big data in hospitals.

(JMIR Med Inform 2015;3(3):e26) doi: 10.2196/medinform.4221
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Introduction

Clinical Pathways
Clinical pathways, also known as care or critical pathways, have
been introduced in health care systems to improve the efficiency
of care, while maintaining or improving its quality [1]. In 1995,
Pearson et al [2] described critical pathways as a management
plan that “displays goals for patients and provides the sequence
and timing of actions necessary to achieve these goals with
optimal efficiency”. More recently they have been described as
a concept for making patient centered care operational, and for
“supporting the modelling of patient groups with different levels
of predictability” [1]. Clinical pathways are developed by
multidisciplinary teams and rely on evidence from the literature,
operational research, and patient involvement methodologies
[1].

Over the years, pathways evolved from paper-based to
computerized pathways [3,4], and there have been efforts to
integrate them with electronic health records [4,5]. The support
for guidelines and pathways is one of the most promising fields
for knowledge-based systems in health care [6]. The standard
functions of pathways have been proposed in [4], and a strong
emphasis is given to the statistics function to implement
automated methods for checking the occurrence of variance (ie,
discrepancies between planned and observed events).

There are several definitions of clinical pathways in the
literature, but in this paper they are defined as an ordered set of
patient-centric events and information relevant to a particular
clinical condition. In this paper, a clinical pathway is not
described in the context of an intervention, but in the context
of the description, analysis, and evaluation of clinical parameters
for a specific condition over time. The pathways are also data
driven and allow the inspection of routine hospital data that
would otherwise be overlooked. Furthermore, we place
particular importance on the use of clinical biomarkers and other
indicators (such as blood readings) in pathways, as they enable
a thorough inspection of data quality, as well as further clinical
studies observing trends over time.

Analysis of Clinical Pathways
The analysis of clinical pathways is a topic receiving increasing
attention in medical informatics, but techniques often require
extensive clinical expert knowledge and can be laborious. Huang
and Duan [7] used process mining techniques to measure clinical
behavior derived from clinical workflow logs and to help
identify novel process patterns. According to them, clinical
pathway analysis has been defined as the process of discovering
knowledge about clinical activities in patients’ care journeys.
Ultimately the goal is to utilize the discovered knowledge for
pathway (re)design, optimization, decision support, audit, or
management, and one of the major challenges reported was the
derivation of compact, yet high quality, patterns that cover the
most useful medical behaviors in clinical practice.

Process mining techniques are promising analysis techniques
in the context of clinical pathways. However, it has been
reported that traditional process mining algorithms do not cope
well with unstructured processes like those commonly found
in a hospital environment [8,9], and that they may not produce
clinically meaningful visualizations. The heterogeneity and
incompleteness of the data are major obstacles in achieving
meaningful models, yet an application to stroke has proved
fruitful [10]. An aim of this paper is to produce pathways that
may be suitable for process mining. For this, data quality is key,
but consensus and definitions are lacking [11,12], and intelligent
agents that explore quality issues are needed [12].

The use of routine data or workflow logs in the construction of
clinical pathways is a key topic receiving increasing attention
in the literature [7-9]. In hospitals, such efforts rely heavily on
the hospital information systems (HIS) and electronic health
records (EHR), and the availability and quality of the
information conveyed in them. Indeed, hospitals often opt for
implementing several commercial departmental systems,
creating "islands" of information across various departments
[13,14]. This can significantly hinder the process of extraction
and collation of detailed patient-centric information to create
clinical pathways. The methods presented in this paper attempt
to overcome some of these difficulties.

Data Quality in Electronic Health Records
A review on data quality in EHR [11] identified five data quality
dimensions described in the literature: (1) completeness, (2)
correctness, (3) concordance, (4) plausibility, and (5) currency.
However, the authors identified that not all dimensions are
commonly or consistently assessed, and further work is needed
toward the adoption of systematic, statistically based methods
of data quality assessment. The work presented in this paper
enables the inspection of data quality dimensions with a
particular emphasis on assessing the completeness of pathway
information using biomarker expert rules.

Overall, this paper describes a framework for building and
visualizing prostate cancer pathways using routinely collected
data from a large United Kingdom National Health Service
(NHS) hospital. This approach does not involve workflow logs
produced by HIS or EHR, but rather, the patient-centric data
conveyed in them. Our previous work on methods for the
collection of patient-centric data from multiple HIS [14] has
underpinned this research.

Prostate Cancer
The latest estimates of global incidence indicate that prostate
cancer has become the second most common cancer in men
[15]. In the United Kingdom, it is the most common male
cancer, accounting for 25% of all malignancies [16]. In recent
years, there has been a generalized increase in reported
incidence, but, despite this, the mortality rates have been on the
decline [16-18]. Nevertheless, the economic burden of prostate
cancer will continue to rise due to increased diagnosis, diagnosis
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at an earlier stage, and prolonged survival [18]. It has been
reported that new strategies need to be devised to increase the
efficiency of health care provision for this type of cancer in
order to tackle the increasing burden [18]. Prostate Specific
Antigen (PSA), a biochemical marker used clinically for prostate
cancer detection and prognosis, is associated with substantial
overdiagnosis and excessive treatment [19], which makes its
utility as a screening test controversial, and warrants the need
for further studies.

The National Institute for Clinical Excellence (NICE) in the
United Kingdom publishes clinical guidelines and has recently
developed the NICE pathways, a tool that visually represents
the recommendations and guidelines on a specific clinical or
health topic [20]. Following the NICE pathway, patients with
suspected prostate cancer are directed through from referral, to
assessment, diagnosis, and communication; their needs are then
often discussed at a multidisciplinary team meeting; admission
and treatment options are selected as appropriate, and ultimately
patients are followed up, and outcomes assessed. During each
step of the pathway, relevant patient-centric data are produced
and often stored in a variety of different HIS. Clinicians wishing
to investigate prostate cancer, say to establish the merits of
alternative treatment and management options, would have a
powerful tool if access to the integrated data was facilitated in
an electronic and canonical form. However, as is often the case
with HIS, database systems and their data are heterogeneous,
and data quality, accessibility, and interface vary considerably.

Objectives
The aims of the work presented here can be divided into two:
(1) to generate individual data-driven patient-centric pathways
from routinely collected hospital data for prostate cancer, and
(2) to evaluate the completeness and utility of the generated
pathways for investigating biomarker trends. The latter allows
for the selection of high quality data for clinical studies and
decision making, which, in turn, enables the (re)design,
management, and optimization of pathways. We focus on a
definition of a pathway as a data structure that synthesises
knowledge, and facilitates the development of methods for the
computation of variance and other statistics. The framework
presented in this paper, together with their formalisms, should
allow and encourage other tools and techniques, such as process
mining or ad-hoc algorithms to be used.

Methods

Prostate Cancer Case Study
A case study on prostate cancer was carried out at the Norfolk
& Norwich University Hospital (NNUH) NHS Foundation Trust
with data from this hospital only. Appropriate credentials were
obtained from the National Research Ethics Service (Norfolk)
and NNUH research governance committees, and no patient
consent was required. The data were anonymized and no patient
sensitive information such as names or addresses was used.

This section first summarizes the methods for data collection
from multiple hospital sources under the subheading “The
Operational Data Store”, and it is followed by the definition of
a pathway under the subheading “Extraction of the Study

Datasets”. Descriptions of the methods to build a pathway
dictionary and to generate the pathways are given under the
subheading “Building the Pathway Dictionary and Database”.
The subsection “Visualizing Pathways and Overall System
Architecture” introduces the system to integrate, visualize, and
analyze the pathways, as well as a novel graphical
representation, and the subsection “Assessing Completeness
Using Biomarker Information” describes a method for assessing
the quality of the pathways.

The Operational Data Store
Electronic patient data in hospitals are usually complex and
heterogeneous [21,22], scattered through several information
sources or HIS, and its retrieval methods are often ad-hoc and
poorly described in the literature [14,23]. A previously proposed
data extraction process [14] was used to collect patient-centric
data from HIS, and it is summarized in this section.

The process involves liaising with domain experts (or subject
matter experts) to identify data sources where information
related to prostate cancer patients is likely to be stored (eg,
radiology). In this case study, the team of experts included a
urology consultant, prostate cancer geneticists, a consultant
oncologist, a histopathologist, and a chemical pathologist. For
each data source identified (a EHR or HIS), the data extraction
process [14] was followed. The process consists of four key
steps and Figure 1 shows this: (1) system understanding, where
each data source is investigated and details about the system
are gathered; (2) data understanding, where data familiarization,
selection, and building the data dictionary occurs; (3) extraction
preparation, where data extraction methods are prepared or
reviewed; and (4) extraction and evaluation, where data are
extracted, validated, and the process is evaluated.

An example of an input data source is the laboratory information
system (LAB), where information on the PSA and other blood
tests are stored. Following the data extraction process in Figure
1, a thorough inspection of the system is carried out first (system
understanding step). This required the involvement of domain
experts (clinical and administrative), obtaining relevant access
credentials and previewing the system, and resulted in an
understanding of the way in which blood tests are requested
and how that information flows in and out of the LAB system.
The next step deals with understanding the data. In this example,
data on PSA were explored, including details on how it had
been recorded over time, data field semantics, and available
patient and blood test identifiers that, for example, allow the
retrieval of unique blood tests for each patient. Once both
systems and data were investigated with respect to the required
information (in this example, the PSA), then a suitable data
extraction strategy is devised. Finally, the selected methods are
tested to ensure that they produce the same desired results. In
this example, the LAB system offered an on-line analytical
processing interface, where additional training and input from
domain experts was required in order to produce database
queries that retrieved the PSA test data along with dates, times,
and identifiers for data linkage purposes. Sample datasets are
extracted in a suitable format, and subsequently they are
evaluated. The evaluation consists of cross-checks against the
LAB system and patient notes, and a careful examination for
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missing or erroneous values (for example, nonnumeric values
were identified in some of the PSA test results: <0.1 ng/ml).
Erroneous values are corrected when possible (for example,
<0.1 was reformatted to 0.05) or their records are eliminated.
Finally, a study dataset is produced for the LAB system
containing the PSA tests. A second output is metadata (about
the source, its tables, attributes, and values) that is generated at
each step of the process, and allows it to be repeated and
documented over time.

The process is repeated for every data source where information
on prostate cancers is likely to exist, and this ultimately
generates an operational data store (ODS), which is similar to
a data warehouse from where specific data marts can be
extracted. The ODS contains relevant metadata and detailed,
routinely collected information on the selected case study. By
enabling the inspection, linkage, and compilation of cohorts, it
helps to overcome the types of heterogeneity commonly found
between HIS such as technical differences, syntactic, and
semantic heterogeneity. This process is also suitable for, and
greatly facilitated in, less heterogeneous environments where
data sharing standards exist.

Overall, the data extraction process enables the use of routinely
collected data to build a repository containing all interactions
of the patient with the hospital. This process can be repeated so
that the ODS continues to be populated with new records. The
methods of extraction are reviewed and revised over time. The
costs associated with this process depend on the functionalities

of the HIS, particularly with respect to the retrieval of cohorts
of patients, as well as documentation and support. The process
may be time consuming in systems where no querying tools are
available, and alternative methods are required. Overall, the
most time consuming step of the process, given our experience
in this case study, was system understanding, where a substantial
amount of time was spent liaising with hospital information
technology managers and other staff, and the second most time
consuming step was extraction preparation. However, after the
first iteration, the process becomes streamlined and only minor
adjustments may be required even in heterogeneous
environments. The process is also applicable to more structured
environments where reduced costs are to be expected. Different
problem domains are not expected to require other costs, as
these are mostly dependent on the HIS rather than on particular
data elements.

The data available in the ODS may be more than required for
a particular clinical study, as the retrieval process is based on
minimum use of constraints. However, this provides a holistic
representation of the patients, including their demographics,
comorbidities, test results, or other information, and is limited
by the availability of electronic information in the HIS. The
selection of specific data elements from the ODS that will form
a pathway is performed later (“Building the Pathway Dictionary
and Database”) in consultation with the domain experts. A
summary of the data retrieved from the ODS for creating
pathways is given in the Results section.

Figure 1. Simplification of the data extraction process [14].
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Extraction of the Study Datasets
In the case study on prostate cancer, the ODS contains
information from the following systems: administration, cancer
waiting times, histopathology, radiology, biochemistry,
operating theater, orthopaedics, oncology, and radiotherapy.
However, not all sources are used in the pathways presented in

this paper, as later explained in “Building the Pathway
Dictionary and Database”. Table 1 shows the data sources used
in the development of the pathways. Retrieving diagnosis codes
from the administration and histopathology systems first
identified the prostate cancer cohort, and it was later validated
with information from the local cancer registry.

Table 1. Data sources used for the development of the pathways.

Description of selected dataData source (abbreviation)

Patient episodic information, comorbidities, and clinical coding.Administration (ADM)

Histopathology reports and extracted Gleason grades.Histopathology (HIST)

Radiological imaging limited by reports where the word prostate occurs.Radiology (RAD)

PSA tests. However, other blood tests can be added.Biochemistry (LAB)

Operating theater procedures and coding.Operating theater (OT)

Radiotherapy treatments dates and number of sessions.Radiotherapy (RT)

The cancer registry dataset includes some of the above data, which can be used for quality
checking purposes, and additional data such as cause of death.

Cancer registry datasets (CR)

The Prostate Cancer Cohort
For the prostate study, a cohort of 1904 patients diagnosed with
prostate cancer (average age 72, SD 9) between 2004 and 2010
was selected for retrieval from the ODS. This represents a subset
of the total number of prostate cancers, where it was possible
to accurately ascertain both diagnosis and treatment dates.
Ascertainment of nearly 20% of the original cohort was not
possible due to the information not being consistently recorded,
to changes in systems and the way they are used, and to data
quality not being consistently inspected prior to 2008. Data
from 2003 were collected and used as potential “screening” and
from 2011 as follow-up. This time window delimits patient
pathways. Date and cause of death were collected from the
cancer registry early in 2012. All patients in the cohort have a
diagnosis date and have been offered treatment as per the UK
guidelines. The UK national cancer waiting time guidelines
stipulate that all suspected cancers in the NHS should be offered
treatment (including active surveillance) within 31 or 62 days,
according to the national cancer waiting times guidelines. As
per the cancer waiting times guidelines, all patients were
followed up after diagnosis and, in this cohort, 2.21% (42/1904)
did not agree on any form of treatment. This differs from active
surveillance, in that the latter requires the patient and clinician
to agree to monitor tumor growth.

Additional information not consistently recorded in HIS (eg,
tumor staging) was retrieved from the local cancer registry (CR)
using deterministic record linkage on national health identifiers
and dates of birth. The registry served as a source of validation
for the collected data as most of the critical data elements often
used in prostate cancer studies will be present in the local CR.
However, additional hospital data that were routinely collected,
but not present in national audit reports or cancer registries
(such as biomarker trends or imaging) increases the value and
completeness of the pathways. In particular, the value of the
biomarker in determining the quality of the pathways is
discussed later in this paper.

Defining a Pathway
In order to create pathways, data elements are selected from the
ODS and its sources (Table 1). A formal definition of a pathway
is given in the “Definitions” subsection, and further details on
the selection of data elements and their inclusion in a pathway
data dictionary are given in the “Building the Pathway
Dictionary and Database” subsection. The developed software
environment, data flows, and visualizations are described in the
subsection “Visualizing Pathways and Overall System
Architecture”, and the proposed methods to compute
completeness based on biomarker elements within a pathway
are given in the subsection “Assessing Completeness Using
Biomarker Information”.

Definitions
Let D represent the pathway dictionary, where the i-th entry has
a code ci(1≤i≤n) in a total of n possible codes described in detail
in Table 2. CE is the subset of codes containing timed events,
and CI the subset containing informational elements, such as
demographics. By associating a zero time with informational
elements, all events in the pathway can be viewed as timed
events.

A pathway activity A is then defined as four-tuple A=(r,t,c,v)
where,

• r is the patient identifier
• c ∈ C is an event code
• t is the time in days before or since the day of diagnosis

recorded for patient r
• v is a value, numerical or categorical, associated with

dictionary code c

A pathway for patient, r, is represented as a chronological
sequence of activities, P=(A1,A2,...,Am), where

1. Ai is of the form (r, ti, ci, vi) for 1≤i≤m,
2. ti≤ti+1 for 1≤i≤m,
3. any Ai with c ∈ CI has ti=0,
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4. if Ai = (r, ti, ci, vi) and Ai+1 = (r, ti+1, ci+1, vi+1), then there
is no activity A = (r, t, c, v) where

5. ti< t<ti+1, and
6. all relevant activities involving patient r appear in P.

Note that when ti=ti+1 for 1≤i≤m-1, the corresponding activities
Ai and Ai+1 are concurrent.

A simple pathway for patient r=1 might be P=〈 A1=(1,-28,P,45),
A2=(1,0,D,2), A3=(1,1,G,"4+3"), A4=(1,1,H,"Cyproterone
Acetate"), A5=(1,151,R,"37"), A6=(1,260,P,0.2),
A7=(1,340,P,0.05), A8=(1,539,P,0.05) 〉.

In this patient’s pathway, the first PSA test was elevated at 45
ng/ml, and this led to the diagnosis of stage 2 prostate cancer,
with a Gleason grade of 4+3. Note that the biopsy was
performed as an outpatient event, and hence, it is unavailable
in this pathway, however, the histopathological findings of that
biopsy are present. The patient then agreed to undergo hormone
therapy (cyproterone acetate) and a subsequent 37 sessions of
radiotherapy. The number of radiotherapy sessions is recorded
as value of element code R. Information on specific sessions
was not consistently available at the time, and was therefore

not used. The radiotherapy sessions were then followed by PSA
readings of 0.2 ng/ml and two readings <0.1 ng/ml, which
indicate a good response to treatment.

The above model of expressing pathway activities is similar to
the entity-attribute-value (EAV) data model [24], where
concepts are described in an attribute in a row. Later, the i2b2
data model [25] expanded on the EAV model to account for
time (start and end dates for each observation). This, together
with a star schema, has been described as an extremely efficient
way of querying data, as a large index can be built to encompass
all patients' data in the master table [25]. The proposed pathways
model expands the EAV model in that every row has an
associated time, and this is important because pathways are
ordered sets of events. With regards to the i2b2 model, the
proposed pathways include fewer elements in the master table,
and focus on a sequential representation and processing of
pathway activities. In addition, activities and their pathways
can also be linked to other tables (and dimensions) that store
other types of information, similarly to what is accomplished
by the star schema in the i2b2 model. The proposed pathways
model is part of an overall framework environment that is
described in detail in the subsection “Visualizing Pathways and
Overall System Architecture”.
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Table 2. Pathway dictionary for prostate cancer.

Frequency, n (%)Data sourceTypeNameCodeClass

1904/1904 (100.00)CRaInformationDeprivation scoreQDemographics

1904/1904 (100.00)CRaInformationAge at diagnosisADemographics

402/1904 (21.11)CRa+ODS (ADMb)EventDeathZDemographics

22/1904 (1.16)ODS (ADMb)InformationClinical trialLDemographics

406/1904 (21.32)CRaEventOther cancersXDemographics

1904/1904 (100.00)

CRa+ODS

(HISTc+ADMb)EventDiagnosis and stagingDDiagnostics

1609/1904 (84.51)CRa+ODS (HISTc)EventHistology gradeGDiagnostics

291/1904 (15.28)ODS (RADd)EventImagingIDiagnostics

1814/1904 (95.27)ODS (LABg)EventPSA testPDiagnostics

640/1904 (33.61)CRa+ODS (OTe)EventSurgerySTreatment

395/1904 (20.75)CRa+ODS (RTf)EventRadiotherapyRTreatment

8/1904 (0.42)CRa+ODS (ADMb)EventChemotherapyCTreatment

2/1904 (0.11)CRa+ODS (OTe)EventOrchidectomyOTreatment

960/1904 (50.42)CRa+ODS (ADMb)EventHormoneHTreatment

422/1904 (22.16)CRa+ODS (ADMb)EventActive surveillanceWTreatment

42/1904 (2.21)CRa+ODS (ADMb)InformationNo treatmentNTreatment

aCR = Cancer Registry datasets
bADM = administration
cHIST = histopathology
dRAD = radiology
eOT = operating theater
fRT = radiotherapy
gLAB = biochemistry

Building the Pathway Dictionary and Database
The selection of key informational requirements for the
pathways is facilitated by the patient-centric approach to data
collection [14]. The ODS contains data from the retrieved
hospital sources and metadata, which allows for the inspection,
linkage, and integration of semantic and syntactically different
data. Nevertheless, the ODS may contain information outside
the domain of a specific pathway. Therefore, in order to build
a pathway dictionary, it is crucial to identify, select, and retrieve
key data elements. Figure 2 illustrates the process of building
a pathway dictionary from the data in the ODS, and is inspired
by the similar data warehousing technique of
extract-transform-load [26]. The pathway dictionary can be
regarded as a simple ontological knowledge base, built by a
bottom-up process, from available data to concepts. Temporal
ontologies have been developed [27], yet for the definition of

pathways, the above time-oriented data structure together with
a pathway dictionary was sufficient to enable temporal
abstractions.

The dictionary building process, based on input from domain
experts, literature survey, and current prostate cancer guidelines,
involves gathering relevant data elements and applying
transformations to either create new features or strip out
irrelevant elements (eg, hospital events that are neither exclusive
nor relevant to the treatment of prostate cancer). At the end of
this process, and for each data element, a flat file with the data
corresponding to that element is created in the four-tuple
transactional format described in the subsection “Definitions”.
The steps involved in this process are described in detail below.
At present, the system has not used multimedia or other large
files, but plans are underway to ensure that such files can be
encrypted and stored locally. In such cases a pointer to the file
would be included in the relevant data element.
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Figure 2. Methodology to build pathways’ dictionary and database (DB).

Preliminary Inspection and Selection
The domain experts collaborate on a first inspection of the
available data in the ODS to help with the identification of key
data elements to be included in the pathways. This involves
examining summary statistics (such as frequencies of
biochemistry tests or other descriptive statistics) and metadata
(such as attributes descriptions, semantics, or expected outliers)
from the ODS, and is important as it sets the granularity of the
pathways and the extent to which they can be meaningful for a
particular disease. This process was mostly ad-hoc, as each data
element required different statistics, and was also based on
contributions by the domain experts. Data updates, however,
may be processed automatically once the pathway dictionary
is built.

For the prostate cancer study, we defined three classes of
information: demographics, diagnostics (including
investigations), and treatment. Hence, the selected elements in
this step have an associated class. Further to this, each element
type can either be a timed event, describing a particular activity
at a given time, or auxiliary information, such as demographic
data or other nonevent data, such as a patient’s participation in
a clinical trial. Both class and type are two properties common
to all elements of the pathway, and can be determined a priori
or throughout the process of building the pathways as explained
below.

For each selected data element, the following six steps are
carried out to create a complete pathway dataset and dictionary.
Throughout the following steps, we will use the example of the
biomarker test for prostate cancer (PSA test) as a data element.

Assessment
The first step is to inspect the element’s values as well as its
semantics, syntax, and data type, and any potential limitations
that may interfere with the consistency of the data element.
Additional mapping, linkage, and transformations may be
necessary to enforce a consistent format and these should be

identified here. An example arising from the PSA test was the
need for the removal of values that include symbols, such as
“<1”, meaning the PSA test value is less than one. In this case,
such values were replaced by 0.5. A first classification of the
element is also given by assigning a dictionary code and the
element type (informational or timed event); in this case the
code for the timed event PSA test is “P”.

Retrieval
The set of attributes and values for the data element are retrieved
from the ODS. In the case of the PSA test, the attributes in the
ODS include dates of test authorization, date of entry, value,
comments, clinical history, fasting, blood reading thresholds,
and the patient identifiers. More complex data elements, such
as social determinants can also be created from the information
available in the ODS, but they might require additional or
specific preprocessing. For example, in this case study,
deprivation score was included in the pathways (code Q in Table
2), and regarded as an informational element. Because of the
way in which the deprivation index was recorded, the data
element was in this case time-independent, and handled
differently by the pathways framework described in the next
section.

When retrieving information to create or update a data element,
rule-based deterministic record linkage can be used to enforce
constraints. In the course of the case study, the retrieval step
was used to select data within the study time period as well as
validating data from the hospital sources against the cancer
register datasets, where possible, in terms of completeness,
correctness, and concordance. The retrieved attributes must
have the information required by pathway definition. The data
for the particular element are then stored, and in this case study
a comma separated file (CSV) is created to this effect. For PSA
tests, the attributes selected from the ODS to be included in the
pathway were date of entry (date when the sample was taken
from the patient within the selected time period), the value, and
the identifier that allows linkage. Working with CSVs can
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introduce additional technical challenges, in particular when
different database or spreadsheet systems are used. In this case
study, the data available in the ODS were extracted in a format
that is compatible with CSV. However, additional checks using
raw text editors and spreadsheet software may need to be
performed after the data are extracted, so as to inspect and
ensure that the exported data meet the required CSV constraints.

Transformation
The retrieved data file is converted into the pathway data
structure, with attributes Identifier, Code, Date (instead of time),
and Value, where Code is a constant. Date is used here, but it
will later be converted into time, t, zeroed at diagnosis date.
The latter, by removing full dates, allows an additional layer of
anonymity to the pathways, as well as a basis for comparison
among patients. Any necessary transformations and formatting
changes identified in the previous steps are undertaken here.

Summary Statistics
Summary statistics are produced in this step. These include
distributions of the Value attribute, which can help to detect
potential bias, together with overall support (ie, total number
of patients); value-specific support (ie, number of patients on
each value category); and extremes. Such statistics may help to
detect and correct quality issues by assessing completeness
(missing data), correctness, and plausibility. Additionally, other
statistics may be produced, such as the number of values within
a range; this is particularly useful for producing a summary of
abnormal blood readings, such as raised PSA tests.

Inspection
Together with the domain experts, the retrieved data and
descriptive statistics are inspected. The values of the attributes
are also checked for format consistency and the quality
dimensions described above. At this stage, a decision regarding
the data element is reached. The element may be:

• Kept as is, should it contain sufficient information and
adequate support;

• Rejected, because there may not be enough information or
support, or because the formats or data types no longer
match those previously collected. The latter may lead to a
reevaluation of the methods used to extract the data.
However, this is not expected to happen when the process
in Figure 1 is followed, and consistent metadata is also
collected; and

• Subject to decomposition, into two or more elements, should
the values of the element vary qualitatively, creating a
source of ambiguous information, or should the
requirements of a particular study involve inspecting a
particular quantitative range, such as the abnormal range
of a blood reading.

In the example of the PSA test, the data element was kept after
the values were set to a canonical form.

An example of an element that was rejected in the case study
is biopsy, because of insufficient support (this is further
discussed below). A further example of an element that was
split was surgery, into orchidectomy and surgery
(prostatectomy). Another example of an element that was split

was radiotherapy, where, for the analysis of the trend of PSA,
only radical radiotherapy was interesting to investigate, as it
affects the PSA.

Approval and Update
Upon inspection, a decision is made regarding the data element
and its values. When the decision is favorable, an update is
carried out. The update is concerned with the technical work of
merging the table containing the data element and its values
with the pathways database master table. Further transformations
are also carried out to sort the master table by date and patient
identifier, and to compute time t zeroed at diagnosis date. This
can be achieved by either creating an informational element
providing the date of diagnosis or by programmatically isolating
the specific date from an existing element and subsequently
setting t for all activities in a pathway. The pathways dictionary
is then updated with summary information.

The process of building the pathways data dictionary can be
revisited to accommodate new data or to change the way in
which informational elements are modelled. For example, should
informational elements later be provided with a time-point,
these can be remodelled as timed events and instructions can
be added so that the software framework handles them
differently. The latter is described in more detail below.

Visualizing Pathways and Overall System Architecture
A system responsible for the integration, visualization, and
analysis of pathways and related data was developed. Figure 3
illustrates the overall environment of the developed carcinoma
of the prostate visualization and interpretation system (CaP
VIS), the ODS, and the previous method of building the pathway
dictionary. Figure 3 also shows the ways in which the data flow
from the sources, and the steps involved in bringing detailed
pathways into the visualization and interpretation system, the
analysis, or query engines. The steps of the two main processes
that feed data into the CaP VIS system start from the ODS and
are enumerated. Secondary processes are highlighted with dotted
lines.

The main process responsible for producing the pathways starts
from the ODS and follows steps 1a to 5a in Figure 3. Datasets
were extracted from the ODS in the pathway format defined in
the subsection “Defining a Pathway”, and used to build the
pathway dictionary (as described in the subsection “Building
the Pathway Dictionary and Database”), and the raw pathways
database (following steps 1a and 2a). The pathways engine,
which works with the information stored in the raw pathways
database (step 3a), is responsible for the segmentation,
summarization, cleansing, and indexing of the raw pathways.
Such operations together allow for the mapping, selection, and
retrieval of individual or groups of similar paths using regular
expressions or ad-hoc algorithms. The detailed pathways are
organized by patient identifier and stored as “plots” (following
step 4a) that allow an interpreter and the visualization software
(CaP VIS) to produce a detailed graphical representation (step
5a). The interpreter will parse each activity from a pathway and,
based on the dictionary and a set of rules determined for each
element code, plot the corresponding graphical representation.
An important feature of the visualization system is to integrate
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the pathways with histopathological or further clinical
information. A coding lookup table was added in order to
translate and present diagnosis (International Classification of
Diseases, ICD) and procedures (Office of Population Censuses
and Surveys) codes (highlighted by the dotted lines in Figure
3). Because the time length of different pathways can vary
considerably, it was important for the plot to be interactive,
allowing zoom and rescale, as well as mechanisms for graphical
conflict resolution (ie, avoiding overlapping elements). Figures
4 and 5 show sample output from the visualization software and
a patient pathway and related information, including the pathway
data format. The analysis engine can be used by the CaP VIS
software to compute statistics for the pathways, but it can also
be used on its own to develop algorithms that work with the
pathways data. The subsection “Assessing Completeness Using
Biomarker Information” demonstrates the use of the analysis
engine in computing completeness scores for the PSA values
in pathways. The analysis engine consists of a set of functions
and libraries that are built in to main software, written in Python.
In order to access the engine and perform operations, Python
scripts can be written to access relevant functions that read
information from pathways, generate graphical representations,
compute PSA kinetics, or other statistics.

The CaP VIS system is also fed additional data that can be
linked with pathway information. This process follows steps
1b to 3b in Figure 3, and produces a database of other clinical
information not included in the pathways dictionary, such as
full histopathological text reports. The latter could still be
included in the pathways, but in our case study, this information
was not part of the desired graphical representation of a pathway,
and so it was more efficient for it to be accessed differently.
Furthermore, this enables the system to use additional data that
are not part of the pathway. The CaP VIS system integrates this
information and shows a novel graphical representation of the
patients' pathways. Figure 4 shows the left side of the CaP VIS
screen where the graphical representation of a pathway is visible,
and Figure 5 shows the right side of the screen with additional
information pertaining to that pathway. Together, the two figures
show the full screen of the system.

The way in which pathway elements are plotted in CaP VIS
depends upon their code, type, and value. In the pathway plot
seen in Figure 4, the x-axis represents the time in days, zeroed
on diagnosis of prostate cancer, and the y-axis represents the
biochemical marker, PSA. Other data elements are plotted either
as vertical lines dividing the pathway into segments, or as further
information captions along the x-axis or y-axis, as needed. The
plot illustrates a total of 32 events and informational elements.
Vertical lines pertaining to treatments or diagnostics are
accompanied by the respective element code from the dictionary
on top. There are three types of vertical lines that are plotted:
diagnosis (code, D, solid line), treatment (codes, H for hormone
therapy and S for surgery, dashed), and death (bold). The latter
is accompanied, along the x-axis, by ICD coding for the causes
of death as well as age at death, whereas the diagnosis line is
accompanied by age at diagnosis, tumor staging, and Gleason
grade. Treatments are plotted as dashed lines and further
biopsies, dotted lines. The lines may overlap; however, color
coding and scaling are available to further investigate smaller
segments of the pathway when necessary.

The main CaP VIS system screen contains three areas on the
right side of the screen (Figure 5) to enable the inclusion of the
histopathology text reports, pathway details, and annotations.
The histopathology box can be toggled between a summary of
the pathway statistics including PSA kinetics (measurements
of change over time, widely used to assess recurrence) [28] or
the histopathology text report. The pathway details box includes
the pathway data in the format described in the subsection
“Defining a Pathway”, and further information computed based
on that data. Other screens include the detailed PSA kinetics
regression line (seen in Figure 5 above histopathology text
report, including doubling time and velocity), and a further
screen (not shown here) summarizing the details of all 1904
pathways, which can be used to query the cohort. Overall, the
CaP VIS system allows a thorough inspection of biomarker
trends and other electronically available data on patients with
prostate cancer by clinicians and researchers.
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Figure 3. Data flow diagram illustrating the relationship between the operational data store (ODS, in bold), the pathway and analysis engine, the
carcinoma of the prostate visualization and interpretation system (CaP VIS), and other interactions including lookup databases (DB) for International
Classification of Diseases (ICD) and OPCS (Office of Population Censuses and Surveys) coding. The two main processes that feed information into
the CaP VIS system are enumerated. The pathways data follows steps 1a to 5a, while other information follows steps 1b to 3b. Secondary processes are
highlighted with dotted lines.
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Figure 4. The CaP VIS system showing the left side of the screen with the graphical representation of a castration resistant patient pathway. The patient
was first treated with hormone therapy and had a subsequent palliative prostatic resection. The plotted pathway shows the trend of the PSA biomarker
together with diagnosis line and treatments.
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Figure 5. The carcinoma of the prostate visualization and interpretation system (CaP VIS) system showing the right side of the screen where additional
information about the patient pathway is seen. There are three sections that show the histopathology report, the pathway details in the format presented
in this paper, the annotations section, and a fourth section (hidden) contains pathway statistics. An overlapping window shows in detail the prostate
specific antigen (PSA) kinetics before treatment, computed for this pathway. The toolbar above the histopathology section allows the user to zoom and
pan the plotted pathway (in Figure 4), as well as to save the plotted figure to file, search for particular patient pathway, or navigate to the previous or
next patient pathway. Doubling time (DT) and velocity (V).

Assessing Completeness Using Biomarker Information
Routinely collected data can vary in quality, and it is important
to assert the quality of the elements in the pathway so that they
can be selected or discarded for clinical analysis. The above
sections dealt with the definition and building of pathways from
routine data, and this section introduces a method for inspecting
their quality with the aim of selecting pathways for clinical
studies. We already discussed that upon extraction from the
ODS, data elements were previously cross-validated against a

trusted source, namely, the CR. However, the biomarker
information available in hospitals and included in this study
enabled additional quality assurance. To this effect, we
investigate methods of computing the completeness of pathways
from the biomarker information. For this, rule-based scores
were computed. The data elements used to assess pathway
quality were the PSA and all radical treatments available in the
pathway dictionary (ie, treatments that have an impact on the
biomarker). The reason for choosing these elements is their
interest for the analysis of prostate cancer, and hence, their
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ability to indicate the quality of the data for that specific
purpose. Clinicians are also interested in biomarker trends and
in comparing patients under different treatment regimes. Similar
methods may be applied to other variables or domains, and
should allow the assessment of data quality for different clinical
investigations.

Rule-Based Scores
Given the defined dictionary and its underlying format, it is
possible to create a knowledge base of rules to aid the process
of computing completeness scores for particular elements of
the pathway. It is often difficult to convey and analyze a
biomarkers’ information in pathways, but here it was possible
to compute their trends and to allow those computations to
inform on the quality of the pathway. In the particular case of
prostate cancer, the trend of PSA readings across the pathway
is of interest. We identified, guided by domain experts, two
major sets of rules in which the biomarker can be used to assess
the completeness of a pathway with respect the clinical domain.
The first set of rules relies on the position of biomarker readings
in the pathway, whereas the second relies on identifying clinical
interventions that justify abrupt changes in biomarker values.

Rules can be applied programmatically by running Python
scripts in the analysis engine. In this case study, the rules were
used to help determine the quality of the pathways for future
research. However, similar rules can be built to assess adherence
to guidelines, or to perform complex data queries.

Positioning of Biomarker Readings
As some of the intended clinical investigations pertain to PSA
trends and associated treatments, it is important to have complete
PSA trends within a pathway. In this context, a pathway should
include biomarker readings before and after treatment so that
the effect of treatment on the biomarker can be elucidated in
posterior analyses. We can therefore compute a partial score of
a pathway as a result of a set of rules on the occurrence of PSA
readings. The rules are presented in Table 3 with their respective
score and the percentage of pathways where the rule applied.
The computation of the positioning score involves iterating
through pathways’ codes and flagging occurrences of the PSA
and their position with respect to treatments (excluding active
surveillance). The most informative pathways should have one
or more readings before and after treatment and the least
informative have no PSA readings.

Table 3. PSA availability and positioning rules with respective scores and coverage.

Coverage, n (%)Rule descriptionPositioning score

90/1904 (4.73)No PSA readings found.0

77/1904 (4.04)One or more readings found before treatment (or
no treatment) and none after treatment.

1

158/1904 (8.30)One or more readings found after treatment and
none before treatment.

2

1579/1904 (82.93)One or more readings found before and after
treatment.

3

Substantiation of Biomarker Variation
Further rules can be devised to ascertain quality. For example,
biological variations, in this case expressed by the PSA, should
often be accompanied by evidence of some clinical intervention
or other relevant factor. In the case of prostate cancer, an
analysis of the PSA curve can be undertaken to identify major
changes in PSA readings. In this case, the most significant drop
in PSA should be associated with treatment to the prostate. A
complete pathway for our purposes should attempt to provide
explanations for such drops in the form of some clinical
intervention. In this case, the computation of a score involves
looking at every pair of PSA readings and then identifying the
maximum absolute drop. Searching between the pair of readings
to identify an element of substantiation, which in this case study
was set to be any radical treatment, follows this. The result of
this rule is a Boolean value, stating whether substantiation of a

large change in the biomarker trend was detected. Although this
rule may in most cases provide relevant insights on data quality
for patients with prostate cancer, the use of other biomarker
variations to inform on quality should be carried out with
caution, as other potential factors could introduce bias. This has
been discussed in detail in [29,30].

Overall Score
An overall score for completeness can then be computed based
on both positioning of biomarker readings and substantiation
of major variation. It is worth noting that pathways that receive
a positioning score of 0 or 1 could not have substantiation by
definition, as no PSA values appear after treatment. The overall
score is an ordered set of values in which the highest score is
awarded to the pathways with the highest positioning scores
that are substantiated. The overall scores are exemplified in
Table 4 (see Multimedia Appendix 1).
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Table 4. Completeness scoring system for PSA trends in prostate cancer pathways.

Average number of
unique elements

Frequency, n (%)BiomarkerOverall score

DescriptionSubstantiationPositioning

3.26 (SD .64)90/1904 (4.73)No readings found.N/Aa0S0

4.72 (SD 1.02)77/1904 (4.04)

One or more readings
found before treatment
(or no treatment), and
no readings after.N/Aa1S1

4.71 (SD 1.03)102/1904 (5.36)

One or more readings
found after treatment,
and no readings before.N/Aa2S2

4.56 (SD .99)393/1904 (20.64)One or more readings
found before and after
treatment.

No3S3

4.70 (SD .88)56/1904 (2.94)One or more readings
found after treatment
and major biomarker
variation explained.

Yes2S4

4.80 (SD .92)1186/1904 (62.29)One or more readings
found before and after
treatment and major
biomarker variation
explained.

Yes3S5

aN/A=not applicable

Results

Building Pathways
The development of a framework to build, analyze, and visualize
pathways from routinely collected hospital data made it possible
to create individual patient pathways for 1904 patients, while
integrating clinical information from several HIS.

The developed data dictionary contains 16 elements, described
in Table 2. The data sources specify whether the elements were
collected from the ODS (hospital systems, together with an
abbreviation of the respective system) or the CR. Elements
present on both sources have been cross-validated so their
quality is assured. The quality and accuracy of the data elements
present in the pathways was ensured in the process of building
the pathway dictionary. Quality checks were also performed
when building the ODS, and additional clerical review was
undertaken manually.

Table 2 shows the element’s frequency, and indicates the
percentage of pathways in which that particular element is
present. Table 2 also gives the percentage of patients who died
in this cohort during the time of observation (ie, pathways
including a death event, 21.11%, 402/1904). These deaths are
not exclusive to prostate cancer, and the percentage should not
be used to determine a measure of survival from prostate cancer.
It will be possible, however, to undertake survival analyses in
future studies.

Regarding biopsies, they are only coded if performed as an
inpatient event, and hence, only extensive biopsies were
retrieved. As a result, biopsy events were removed from the

dictionary and are not used in the current study, but can be kept
for future studies. The frequency of imaging events was low
(only captured imaging events on 15.28%, 291/1904, of all
pathways), and it reflects the nature of the retrieval methods
from radiology, which are based on a text search of the word
“prostate”. Further data elements that have not been added to
the dictionary here, but will be added in future studies, include
further biochemistry tests as well as comorbidities and hospital
stays, which may or may not be related to prostate cancer.

The analysis engine computed descriptive statistics, such as the
various frequencies of the elements of the dictionary. A
summary of the pathway statistics for all pathways is given in
Table 5. Descriptive statistics are important as they convey
information about the pathways. They can also give rise to
quality indicators, but we found these methods alone not to be
sufficient to determine quality.

The use of routinely collected hospital data for timed events
indicates with certainty that a particular activity occurred;
however, its absence may not indicate the opposite. Existing
data may be used in validity checks for the completeness of the
data, for example, the PSA biomarker can act as an alert for
potential missing activities at particular time intervals. The
pathways’ data structure and analysis engine enabled the
computation of completeness scores for the purpose of selecting
pathways with similar data points to analyze the biomarker
trend. The analysis engine allows other rules to be implemented,
including measuring the time between PSA measurements, for
example. The following sections show the results of the
application of the rules and their impact on quality assessment
for research purposes.
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Table 5. Summary of pathway statistics.

ValueStatistic

4.66 (SD 1.03)Average number of unique activities

1795 days (SD 1724)Average pathway length

1017 days (SD 653)Average pathway length from diagnosis

P 1723/1904 (90.49)Most common activity code, n (%)

P 1388/1904 (72.89)

X 222/1904 (11.65)

D 141/1904 (7.40)

G 79/1904 (4.14)

L 22/1904 (1.15)

Five most common start codes, n (%)

P 1394/1904 (73.21)

Z 399/1904 (20.95)

G 59/1904 (3.09)

W 12/1904 (0.63)

R 10/1904 (0.52)

Five most common terminal codes, n (%)

694Total number of unique pathway sequences

{P,D,G,H,P} 135/1904 (7.09)

{P,D,G,W,P} 130/1904 (6.82)

Most common pathways’ sequence (repetitions truncated), n (%)

Ha 907/1904 (47.63)

Sb 518/1904 (27.20)

Wc 318/1904 (16.70)

SWd 59/1904 (3.09)

SHe 22/1904 (1.15)
Most common treatment regimes (where first and second treatment modality
are within 92 days of each other), n (%)

aH=hormone therapy alone bS=surgery alone cW=watchful waiting alone dSW = surgery and watchful waiting within 92 days eSH = surgery and
hormone therapy within 92 days

Inspection of the Positioning of Readings
The application of rules on the positioning of the PSA biomarker
allowed the identification of (82.93%) 1579/1904 pathways,
where it was possible to plot the trend of the biomarker through
treatment (scores S3+S5 in Table 4). The framework presented
above made possible the inspection of data elements in relation
to other events plotted chronologically. It is also possible to
compute the proximity between elements. For example,
treatment elements within 90 days were grouped together to
form treatment packages. The type of rules proposed here allow
for the assessment of the timeliness and completeness
dimensions of data quality.

Inspection of the Substantiation Rule
Overall, it was possible to ascertain the biomarker variation
substantiation rule for 61.08% (1163/1904) of the pathways.
We also identified that 4.14% (79/1904) of pathways with two
or more PSA readings had a constant or always rising PSA
trend. These were merged with the overall substantiation
number, making 65.23% (1242/1904) the total number of
pathways with a positive substantiation rule (scores S4+S5 in
Table 4). Substantiation does not occur when a treatment
element is not present in the biomarker interval of interest, or
if the treatment date is inaccurate. This may indicate missing
information in the case of prostate cancer. The substantiation

rule allows for the elimination of pathways with insufficiently
accurate information to study the biomarker trend. This rule
enables the assessment of completeness and timeliness
dimensions of data quality. However, it should be used with
caution, in particular in other domains, as other factors may
also explain the variations in the biomarker trends.

A Hybrid Scoring System
A hybrid scoring system for the completeness of the pathways
combines both biomarker rules described above (positioning
and substantiation), and it is given in Table 4 and examples are
given in the Appendix (see Multimedia Appendix 1). The overall
score ranges from least complete (score S0) to most complete
(score S5), and were automatically computed based on the
criteria set in the rules above. Example pathways for each
computed score are given in the Appendix (see Multimedia
Appendix 1). This particular set of rules aims to identify the
completeness of the pathways based on the prostate cancer
biomarker. It is also possible to extend the framework presented
in this paper to create other quality scenarios involving more
robust and detailed rules based on biomarkers or other aspects
of the pathways. Examples of pathway plots automatically drawn
by the CaP VIS system are available in the Appendix (see
Multimedia Appendix 1) and illustrate each of the five
completeness scores.
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Further Analysis of Data Quality
A further analysis on surveillance regimes made possible the
observation that 7.3% (25/342) of those on surveillance (as first
treatment) had a subsequent treatment within at least a year,
and therefore left surveillance. For those that did not have a
subsequent treatment (92.6%, 317/342), it was possible to
investigate any substantial drops in PSA, which may be
indicative of unrecorded treatments. By establishing a drop ratio
calculated as the maximum PSA drop divided by the PSA at
diagnosis, we noted that 30.6% (97/317) of pathways on
surveillance regimes show a drop over a 0.5 ratio, whereas
15.7% (50/317) had a drop >1. This analysis is only preliminary,
but it may indicate that patients received treatment, yet these
have not been recorded or carried out at this hospital. Such
pathways could be excluded from analyses or be further explored
to seek plausible reasons for the unexplained variation in
biomarker trend. Again, this is an example of the type of analysis
enabled by the framework and the pathways’ data structure.

The analyses on quality also led to improvements in the data
collection process. It was possible, for example, to identify
patients that only had PSA readings after treatment, as well as
those without PSA readings before diagnosis. This process
yielded a small number of pathways (2.00%, 38/1904) where
there had been earlier PSA readings, but these were not linked
to the patient’s main hospital number in the hospital data
warehouses, and hence, were missed on retrieval (not present
in the ODS). Such cases are not expected to occur frequently,
and do not affect any of the hospital administration or clinical
operations. However, they can diminish the amount of
information available for the use of routinely collected hospital
data for analysis. In this instance, as only a small number of
cases were affected, they were manually fixed. The exercise,
however, uncovered the need for further checks by the hospital
on the data warehouse to ensure consistency of recordings.

Framework, Developed Software, and Visualization
The developed framework and visualization software enabled
the visualization of all 1904 patient pathways with their
corresponding biomarker trends. This gives clinicians access
to trends that may have been previously much harder to observe.
Furthermore, the system is flexible and extensible to include
other data elements such as blood readings. For example, Figure
6 shows the PSA values and the haemoglobin (Hb) readings.
The shaded area is the normal range for Hb. In this case, the
drop in Hb on the day of surgery reveals perioperative bleeding.
This information, when computed for all patients, would enable
a study of the length of time that patients take to recover after
surgery. This illustrates the flexibility of the combined
framework and visualization tool, and provides access to a
number of studies with data that was otherwise not readily
available or contextualized. Furthermore, by plotting this,
clinicians are able to see the full profile of the patient with
respect to diagnosis, treatments, and how these affect the
biomarker and other blood values. The pathways dictionary can
continue to be developed to introduce additional information
to this graphical representation.

This work contrasts with other established summarization and
visualization systems, such as LifeLines [31], HARVEST [32],
and others [33,34], in that it provides a succinct graphical and
temporal representation that enables clinicians to promptly read
a large number of data points and their interactions for a given
patient in a single graph. However, this approach was developed
to work with a single clinical domain of interest, while other
systems may cope with multiple or overlapping domains and
more complex data interactions, thereby summarizing larger
amounts of information from EMRs. Nevertheless, the overall
software and framework are also capable of handling the
temporal complexity of constantly changing variables and
producing unique meaningful visualizations for clinicians and
other scientists.

Additionally, the framework presented made possible the
inspection of data quality dimensions similar to those described
in [11], including those that are least often assessed. The
inspection of some of the dimensions, however, depends on the
availability of the data elements in the sources. Currency (or
timeliness) has been considered a fundamental dimension, yet
it is often not assessed and only measured using a single
approach [11]. The pathway data structure presented here
includes time as one of the key variables, hence, it allows for
the examination of currency; pathways are arranged
chronologically and allow for concurrent elements. For example,
in the case study, treatments within 90 days were considered as
a treatment package. Another example of currency evaluation
is the identification and discarding of data elements not relevant
at particular intervals, as exemplified by the positioning rules.
Furthermore, the plausibility and concordance dimensions were
assessed with respect to PSA using the substantiation rule, the
completeness dimension using the positioning rule, and
correctness and completeness dimensions assessed by
cross-referencing against the CR. The methods used correspond
to log review (currency); validity checks (plausibility and
correctness); element presence (completeness) and agreement
(concordance); data source agreement; and gold standard
(completeness and correctness).

The proposed framework and developed software should also
allow for the selection and extraction of particular datasets with
complete data for process mining and other analysis. It has been
reported that the evaluation of the quality of process mining
event logs relies on trustworthiness (recorded events actually
happened), completeness, and well defined semantics [35].
These can be achieved by selecting pathways with required data
points using the proposed framework. Furthermore, the
visualization system allows for the close inspection and
contextualization of pathways, illustrating particular paths with
similar features, such as the ones exemplified in the Appendix
(see Multimedia Appendix 1). In summary, the proposed
framework, when used in hospitals, would facilitate the retrieval,
selection, and inspection of patient pathways, and also the
further steps of data mining analysis using appropriate
methodologies.
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Figure 6. Pathway plot showing the prostate specific antigen (PSA) (round markers) and haemoglobin (Hb) readings (star markers) together. As a
result of the prostatectomy event (S) the PSA dropped and Hb also dropped due to normal perioperative bleeding. The shaded area denotes the normal
range for Hb.

Discussion

Principal Findings
Based on the prostate cancer case study carried out at a large
regional NHS hospital, a framework, which enables the
secondary uses of routinely collected hospital data, was
developed and presented in this paper. The main components
of this framework (Figure 3) are the ODS containing
patient-centric data, used to build the pathways based on the
methodology presented in Figure 2; the pathways engine;
analysis engine; and the visualization software. The underlying
pathway data structure, in some aspects similar to the EAV data
model, retains some degree of patient privacy and together with
the dictionary provides a simplified, yet flexible and powerful,
platform for the complex querying and analysis of patient
information and disease pathways. It enables the summarization
and extension of pathways, as well as the aggregation of similar
sequences. It is also possible to capture and plot pathways with
concurrent elements, and to develop algorithms to further
explore the data and investigate quality issues. Furthermore,
the methodology used to build the pathway dictionary, as well
as the formalisms presented here, can be transported to other
domains and settings. This is particularly true because the
pathways dictionary can be remodelled to accommodate other

data elements and research interests. Likewise, the framework
is capable of plotting other continuous or categorical variables.
The software has also been developed in a way that
accommodates changes, as it focuses on the pathway data model
(subsection “Defining a Pathway”) that is not designed for a
specific disease. Nevertheless, in this paper, the pathways were
constructed using a case study on prostate cancer, and further
work is underway to apply these methods to other domains,
where the emphasis is on different clinical parameters.

The process of integrating routinely collected electronic data
may produce pathways that may not be informative or complete.
A topic, which, to our knowledge, has received little attention
in the literature, is the computation of quality indicators for
data-driven pathways. Such indicators are important to enable
the selection of study-relevant high quality data for clinical
investigation. The methods developed in this paper enable us
to discard pathways that, because of the nature of electronically
routinely collected hospital data, fail to provide enough or
sufficiently accurate information to be used in clinical analyses.

We have shown that methods for pathway quality measurement
can rely on biological marker trends, as they are often the
response to some parallel process. In the case of the PSA, a
sharp decline in the average readings would most likely indicate
treatment to the prostate, which suppressed the production of
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the antigen. This allows us to ascertain whether treatment
records are missing. Similar approaches, however, should be
used carefully so as to take into account any possible
confounding factors. Algorithms were written to compute
completeness based on prostate cancer biomarker rules, creating
an overall scoring system (Table 4). Once researchers are
satisfied that the PSA trends have sufficient data points and are
substantiated (ie, they receive a high completeness score), they
can investigate those PSA trends as predictors of prognosis in
the disease. Such research is seldom undertaken due to the
unavailability of data, but may lead to improved outcomes for
patients and health services.

We investigated the cohort of 1904 patients, automatically built
their respective pathways, and computed completeness scores
with regards to the prostate cancer biomarker. Overall, 65.23%
(1242/1904) of pathways attained the two highest scores, while
82.93% (1579/1904) attained the highest PSA positioning rule.
Hence, these pathways contain sufficient biomarker information
to aid clinical investigations on the biomarker trends. We have
shown that routinely collected data can be transformed and
prepared for clinical research, decision making, and decision
support.

The flexibility of the data structure allows the insertion and
removal of dictionary elements, and work is underway to include
additional blood tests and comorbidities to the pathways, as
depicted in Figure 6. The work presented here has also enabled
future research into pathway adherence and variance metrics,
particularly with respect to the UK NICE guidelines. This work
is possible in the first instance by analyzing similar pathway
sequences, and then by programmatically accessing detailed
pathway information using the analysis engine. This paper
describes methods for data collection, presentation, and quality
assessment that can be applicable to build other disease
pathways in other settings. We are also motivated by further
work on mining pathways, in particular, the computation of
similarity of biomarker trends, and the application of clustering
algorithms and survival analysis in the context of pathways.

Limitations
The framework and pathways were built using a case study on
prostate cancer where there was a particular clinical interest on
the biomarker trends. This specific working domain may
introduce some limitations to the reproducibility of this work;

however, further research is underway to apply the approach to
other domains, specifically in the construction of pathways for
acute stroke.

The number of data elements used in the pathway data dictionary
was also a limiting factor, however, they were sufficient to study
the PSA trends and to select cohorts with similar baseline
features for further research. The pathways data structure
presented in this paper has coped with the addition of new data
elements, but further work is required to assess the quality and
availability of other routinely collected data. Further work on
the methods for evaluating quality is also needed, and it is hoped
that the adoption of systematic methods, such as those presented
in this paper, encourages further research in this area.

With regards to privacy, the pathways data structure includes
an anonymized patient identification number, replaces specific
dates with time zeroed at diagnosis, and suppresses patient
names, addresses, and postcodes. These have been sufficient to
ensure the anonymity of the patients. However, it may be
possible to utilize specific information to attempt to identify
individuals, particularly as new data elements containing specific
information are added. Further work may be required to
anonymize additional information, such as histopathological
text reports, and to ensure that the system is fully resistant to
privacy attacks.

The timeliness of the process of retrieving routine data and
feeding them into the pathways database depends on the
availability of the data in the ODS, and it can be a limitation.
Similarly, the process of building the pathways dictionary and
liaising with domain experts may introduce delays. However,
once the dictionary is agreed and the data and their sources are
fully understood and accessible, creating individual pathways
in near real-time is possible. In this case study, the process of
transforming data from the ODS into the pathways database for
a new data element could be achieved in a few hours, however,
the retrieval of the data from the sources onto the ODS and
liaison with domain experts and other hospital staff could
introduce significant delays up to several weeks. This case study
was also undertaken in a single large hospital and, although the
challenges are reportedly similar elsewhere, it is expected that
the time and effort to feed new routine data can vary
considerably.

Acknowledgments
This work was supported by the Economic and Social Research Council (grant number ES/L011859/1). JHB-S was funded by
the Foundation for Science and Technology (FCT) grant number SFRH/BD/43770/2008. The authors would also like to thank
the staff at the NNUH and the Eastern Office of the National Cancer Registration Service.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Examples of pathway plots drawn by the developed CaP VIS system for each of the six possible completeness scores.

[TIF File, 335KB-Multimedia Appendix 1]
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